High performance electrolyte-gated carbon nanotube transistors
نویسندگان
چکیده
High performance electrolyte-gated carbon nanotube transistors Sami Rosenblatt, Yuval Yaish, Jiwoong Park, Jeff Gore, Vera Sazonova, and Paul L. McEuen Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853 Department of Physics, University of California, Berkeley, CA 94720 Abstract We have fabricated high performance field-effect transistors made from semiconducting single-walled carbon nanotubes (SWNTs). Using chemical vapor deposition to grow the tubes, annealing to improve the contacts, and an electrolyte as a gate, we obtain very high device mobilites and transconductances. These measurements demonstrate that SWNTs are attractive for both electronic applications and for chemical and biological sensing.
منابع مشابه
Ballistic (n,0) Carbon Nanotube Field Effect Transistors' I-V Characteristics: A Comparison of n=3a+1 and n=3a+2
Due to emergence of serious obstacles by scaling of the transistors dimensions, it has been obviously proved that silicon technology should be replaced by a new one having a high ability to overcome the barriers of scaling to nanometer regime. Among various candidates, carbon nanotube (CNT) field effect transistors are introduced as the most promising devices for substituting the silicon-based ...
متن کاملNovel nanotube-on-insulator (NOI) approach toward single-walled carbon nanotube devices.
We present a novel nanotube-on-insulator (NOI) approach for producing high-yield nanotube devices based on aligned single-walled carbon nanotubes. First, we managed to grow aligned nanotube arrays with controlled density on crystalline, insulating sapphire substrates, which bear analogy to industry-adopted silicon-on-insulator substrates. On the basis of the nanotube arrays, we demonstrated reg...
متن کاملPolymer electrolyte gating of carbon nanotube network transistors.
Network behavior in single-walled carbon nanotubes (SWNTs) is examined by polymer electrolyte gating. High gate efficiencies, low voltage operation, and the absence of hysteresis in polymer electrolyte gating lead to a convenient and effective method of analyzing transport in SWNT networks. Furthermore, the ability to control carrier type with chemical groups of the host polymer allows us to ex...
متن کاملSymmetrical, Low-Power, and High-Speed 1-Bit Full Adder Cells Using 32nm Carbon Nanotube Field-effect Transistors Technology (TECHNICAL NOTE)
Carbon nanotube field-effect transistors (CNFETs) are a promising candidate to replace conventional metal oxide field-effect transistors (MOSFETs) in the time to come. They have considerable characteristics such as low power consumption and high switching speed. Full adder cell is the main part of the most digital systems as it is building block of subtracter, multiplier, compressor, and other ...
متن کاملCharge noise in liquid-gated single-wall carbon nanotube transistors.
The noise properties of single-walled carbon nanotube transistors (SWNT-FETs) are essential for the performance of electronic circuits and sensors. Here, we investigate the mechanism responsible for the low-frequency noise in liquid-gated SWNT-FETs and its scaling with the length of the nanotube channel down to the nanometer scale. We show that the gate dependence of the noise amplitude provide...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002